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Newtonian flow theory for slender bodies in a dusty gas 

By R. M. BARRON AND J. T. WILEY 
Department of Mathematics, University of Windsor, Ontario, Canada N9B 3P4 

(Received 9 January 1980 and in revised form 15 September 1980) 

Hypersonic small-disturbance theory is extended to consider the problem of dusty-gas 
flow past thin two-dimensional bodies. The mass fraction of suspended particles is 
assumed to be sufficiently large that the two-way interaction between particle phase 
and gas phase must be considered. The system of eight governing equations is further 
reduced by considering the Newtonian approximation y+ 1 and M,+a. The 
Newtonian theory up to second order is studied and the equations are solved for the 
case of a thin wedge a t  zero angle of attack. Expressions for the streamlines, dust- 
particle paths, shock-wave location and all flow variables are obtained. It is seen that 
the presence of the dust increases the pressure along the wedge surface and tends to 
bend the shock wave towards the body surface. Other effects of the interaction of the 
two phases are also discussed. 

1. Introduction 
The problem of high-speed flow of a gas containing small particles past a solid body 

has received considerable attention since the work of Probstein & Fassio (1970). This 
work, which considered flow past thin wedges and cones and also spherical and 
cylindrical nose geometries, was followed by the investigations of Waldman & 
Reinecke (1971) for conical and spherical shock layers, Spurk & Gerber (1972) who 
studied flow past thin power-law bodies, and others. Much of this work has been 
extended by Peddieson & Lyu (1973, 1974) and Peddieson (1975). Some corrections to 
previous results have been provided by Barron & Wiley ( 1  979). In  all of these works it 
is assumed that a volume element of the suspended phase, whose dimensions are small 
compared to the characteristic dimensions of the shock layer, contains a large enough 
number of particles to allow the formation of meaningful averages of the particle 
properties within the volume element. The volume element is then treated mathe- 
matically as a differential element and the averages are treated as continuous variables, 
i.e. the particle cloud is treated as a continuum. This approach is retained in the 
present investigation. All the above works also assume that the mass fraction of 
suspended particles is so small that the presence of the particles does not significantly 
affect the motion of the gas. This reduces the full problem to that of obtaining the 
motion of the particles as they move through a known gas field. However, Peddieson 
(1975) has shown that the decrease in particle-phase normal velocity is accompanied 
by a compression of the particle phase, and this compression increases in severity as 
the interphase momentum transfer coefficient increases. This is important in that it 
shows that the particle-phase mass fraction may be negligible in the free stream but 
non-negligible near the body surface. When this situation arises, the results of the 
above works become unreliable. The present paper does not require this assumption, 
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and hence the effects of the two-way interaction between the particle phase and gas 
phase are considered. 

In this paper the well-known hypersonic small-disturbance theory of Van Dyke 
(1954) is extended to the dusty-gas flow problem. The system of equations is further 
reduced by considering the Newtonian approximation y+ 1 and M,-+co. The 
Newtonian theory up to second order is studied and the equations are solved analytic- 
ally for the case of a thin wedge at zero angle of attack. The results are illustrated 
graphically and compared with previous results. 

2. Governing equations 
Consider two-dimensional steady two-phase flow past a symmetric body at zero 

angle of attack. The basic formulation is that reviewed by Marble (1970). Treating the 
fluid phase and the dust particle phase as two interacting continua, the steady dusty- 
gas flow is governed by 

V .  (P’u’) = 0, P(u’. V) U’ = - Vp’ + F’, 

V .  ( N ’ d )  = 0, ~ N ( v ’  .V) V’ = - F’, 

(11, (2) 

(3) 

(4)s ( 5 )  

( 6 )  

c,R-’P’u’ .V(p’/p’) +p‘V .u‘ = Q’ +F’. (v’-u’), 

mcN’v’ .VTb = - Q’. 

In these equations, p’, u‘ and p’ are the gas mass density, velocity field and pressure 
respectively, N ’ ,  v‘ and Th are the dust-particle number density, velocity field, and 
temperature respectively. Also m is the mass of each individual dust particle (assumed 
to be the same for all dust particles), c is the specific heat of the dust, c, is the specific 
heat of the gas at  constant volume, and R is the gas constant given by Charles’ law 
for the perfect gas under consideration, i.e. 

T’ being the gas temperature. Finally, the quantities F‘ and Q’ represent the force 
exerted upon a unit volume of gas by the particles and the heat transferred from 
particle phase to  gas phase. Following Marble (1970), we assume the appropriate 
forms for F‘ and Q‘ are 

F’ = kN‘(v ’ -  u’), Q’ = DN’(Tk - T’) = DN’{Tb- (p’/Rp’)]. (8) 

The boundary conditions associated with system of equations (1)-(6) are the jump 
conditions at the shock wave (assumed to be attached), the conditions far upstream, 
and the requirement that the relative normal gas velocity component at  the body 
surface vanishes. In addition, it is assumed that the variables describing the dust- 
particle flow are continuous across the shock (cf. Carrier 1958). 

Shock conditions: At the shock, defined by S‘(x‘, y‘, 2‘) = 0, we have 

[u‘] aVS’, 

[p’u;] = [p’uA2+p’] = [$u;2++pr/(y- 1)p’l  = 0, 
v’ = U,i, N‘ = N,, Tb = T,. 

(9) 
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Upstream conditions : 

u’-+Umi, p’+p,, p’-+p, as x+--00. (10) 

Surface condition : Let the surface be defined by B’(x’, y’, z’) = 0. Then, the condition 

( 1 1 )  

a t  the body surface is 
U’ . VB’ = 0. 

3. Thin bodies and the Newtonian approximation 
For two-dimensional flows the hypersonic small-disturbance theory of Van Dyke 

(1954) for clean gases can be extended to dusty gas flows as follows. Let T be a measure 
of the thinness of the body surface and define undashed variables which are O(1) as 
7-+ 0,  &, -+ 00 such that Hmr = O( 1 )  as: 

x = x’, y = y’/~, u; = Um{l+r2u1+ ...}, u; = U,TU~+ ... 
p‘ = p m p +  ..., p’ = ~ p , M 2 , ~ ~ p + . . . ,  N’ = N,N+ ..., ’j ( 1 2 )  
V ;  = U,{1+72v,+...}, V ;  = U,TV~+ ..., Th = TmTp+ ..., 

where u’ = (ui, ui), v’ = (wi, v;) andM, is the free-stream Mach number. Furthermore, 
assuming the body surface to be defined by y = F ( x ) ,  define new variables y* and ug by 

y* = y- F ( x ) ,  U$ = uZ- F’(x), (13) 

where F’(x) = dE/dx. The second of these is motivated by ( l l ) ,  which now gives 
ug = 0 a t  the body suface y* = 0. 

Substituting ( 1  2 )  and (13) into (1)-(6) and retaining only leading-order terms gives 
equations for a thin body in a uniform hypersonic dusty-gas stream: 

-+-( aP a u*) = 0, 
ax ay* P 2 

aP U$+PP”(S) = --+k,N,N(v,-u~-F‘(x)), 
aY * 

[ & + (v2 - F‘(x)) - Tp = -Do (7, - yMz72p/p),  
aY ” I  * 

where k, = k/Uw, No = N,/pw, Do = D/(mcU,), D, = DN,/(c,p,U,). It should 
be noted that the 2-momentum equations in system (1) - (6)  are decoupled and are 
therefore omitted from (14)-( 19).  The boundary conditions take a form identical with 
those of Van Dyke (1954) and hence are not repeated here. These equations and 
corresponding boundary conditions do not readily admit analytical solutions. The 
problem is further simplified by exploiting the ideas of Newtonian impact theory plus 
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centrifugal force correction. Define, following Cole (1957), a basic small parameter for 

We now perform the limiting process y -+ 1, M, -+ CG such that H = E - ~ M ; ~ T - ~  remains 
fixed. As is well known, this forces the shock to collapse (in theory) to the body surface, 
the shock layer being O(B) in thickness. Hence, in order to examine this thin shock 
layer, the independent variable y* must be stretched, 

The dependent flow variables are assumed to have the following asymptotic expan- 
sions : 

g = y*/c ( 2 1 )  

p(x,  y*; 7,  M,) = ( l / ~ ) p ( ' ) ( x , g ;  H)+p"(x,g; H ) +  ..., 
u;(x,Y*; y,M,) = E U $ ~ ) ( X , ~ ;  H ) + E ~ u $ ~ ) ( x , ~ " ;  H ) +  ..., 
P ( X ,  y*; y, M,) = p(l)(x ,  y"; H )  + ~ p ( ~ ' ( z ,  y"; H )  + . . ., 
N ( x ,  y";  7 ,  M,) = N(')(x, y"; H )  + E N ( ~ ) ( x ,  y"; H )  + . . . , 
v2(x, y*; y ,  M,) = E W $ 1 ) ( 2 ,  y"; H )  + s"$2)(x, g; H )  + . . . , 
TP(x, y";  7,  M,) = T ~ ) ( x ,  y"; H )  + E T ~ ) ( x ,  y"; H )  + .... (22) 

Expansions (22) are now substituted into (14)-( 19) to obtain first- and second-order 
equations which approximate the small-disturbance equations. 

(i) First-order equations : 

(ii) Second-order equations : 

To obtain the shock conditions we follow Cole ( 1  957) and assume an expansion for the - 

(34) 
shock shape in the form g = g(x)+sg,(x)+ .... 
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Then, the boundary conditions associated with systems (23)-(27) and (28)-(33), are: 
(i) First-order boundary conditions : 

p"(x, 9 )  = F", p'l'(x, 9 )  = F'2/(H + F'2), u$~)(z ,  9 )  = 9' - F' - H/F ' ,  

N(l)(x ,  9 )  = 1,  Tg)(x ,  9 )  = I ,  v ~ ( ~ ) ( x ,  9)  = O (35) 

and u$l) = 0 a t  y" = 0. (36) 

(ii) Second-order boundary conditions : 
ap(1) 
ay" 

P("(x, 9 )  = 2F'g' - F2 - H - 9 - (2, g ) ,  

ap(1) 
p"'(x,g) = HF'(2g'+P') ( H + F ' 2 ) - 2 - g 1 T  ( x , g ) ,  

u ~ ( ~ ) ( x ,  9)  = 9; - 9' + Hg'/F'2 + H/F ' ,  (37) 

4. Solution for the wedge 

and (28)-(33) for the case of a wedge-shaped body, defined by F ( x )  = x. 

solution variables satisfying conditions (35) : 

We now consider the solution of the Newtonian approximation equations (23)-(27) 

(i) First-order solution: Equations (24), (26) and (27) immediately give the following 

NU) = 1 p(1) = 1 , Tp = 1,  2141) = - (k,/m) [jj- g(x)]. 

To obtain the remaining unknown solutions and g(z), equation (23) is used to introduce 
a stream function @(x, y") such that 

Transforming to the Von Mises variables (x, @) to solve (25) and (23) for p(l) and u2(1) 

and applying conditions (36) at = 0 to obtain g(x), the complete first-order solution is: 

N(" = q) = p w  = 1 ,  p'l' = 1 / (H+ l ) ,  

~ $ 1 )  = 0, vV$') = ( k , /m)[ (H+ l)x-y"], g(x) = ( H +  1 ) ~ .  (40) 

(ii) Second-order solution : The second-order approximation equations for the wedge 
are obtained by using solutions (40) in (28)-(33). These are: 
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} (42) 
N(2) = Ti2) = 0, Vi2) = (k,/m)g,(x), 
p @ ) = H + 1 ,  P @ ) = H ( ~ H + ~ ) ( H + ~ ) - ~ ,  uA2)= g l + H 2 + H - 1  

a t  y" = g(x) = ( H +  l ) x ,  and dj2) = 0 a t  y" = 0. 
The solution of system (41) satisfying conditions (42) is: 

F2)= ( k , /m)[ (H+l )x -y"] ,  Ti2) = (D, /H)[(H+l)x-y"I ,  

vi2) = (k,/m) { (H  + l)y"-H(2H + 3)x-  ( H  + 1 )  [Dl + ( H  + 1) EON0] x2/2}, 
~ ( 2 )  = k,N,[(H+ l ) x - g ] + ( H + l ) ,  

p(2) = ( H  + 1 )-2 [Dl + koN, ( H  + 1 ) ]  [ (H  + 1) x - y"] + H(2H + 3) ( H  + 
,$a = - [Q + ( H  + 1 1 ko No1 s, 

g,(x) = ( I - H - H 2 ) ~ - ( H + I ) [ D 1 + ( H + 1 ) k o N o ] ~ 2 / 2 .  (43) 

(44) 

The gas temperature can be found from (7 )  as 

T = T'/T, = ( H +  l ) / H + s { - H 2 + H + 3 - D 1 [ ( H +  l )X-y"j} /H.  

5. Fluid streamlines and dust-particle paths 
The fluid streamlines and dust-particle paths are the solutions of the equations 

respectively. In  first-order hypersonic small-disturbance theory u; and v; are replaced 
by 1. I n  the non-dimensional variables (unprimed) these equations become, for the 
Newtonian approximation, 

!!!= u2 = F'+u,* = ~ + S U ~ ~ ) + S ~ U ~ ~ ) + . . .  
ax 

and 
dY - = v2 = s v p  +s2vi2' + .... ax (45) 

With the results in (40) and (43), and recalling that ~ y "  = y - F ( x )  = y - x ,  the equations 
(45) may be integrated to give the equations for the fluid streamlines and the dust- 
particle paths to order s2 as 

y = (x+ A )  -eA[D, + ( H +  1 )  k,N,]x+ e2A[Dl+ ( H +  1) k,Noj2x2/2 + ... (46) 

and 

(fluid) 

-~ ( H +  [Dl + ( H  + 1) koN,]x2 + B (2) k 2 ( H +  7 1)2 x2exp( -2 x ) ] +  ... (dust). 
2 

(47) 

I n  (46) and (47), A and B are parameters which vary from streamline to  streamline 
and dust-particle path to path respectively. 
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FIGURE 1. Gas temperature at wedge surface for various D, ; 
y = 1.2, M2,72 = 5 .  - - -, clean-gas solution. 
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FIGURE 2. Surface pressure coefficient for various y ; 
k,N,  = 1, M2, T~ = 5 .  - - -, clean-gas solution. 
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FIGURE 3. Surface pressure coefficient for various k,N, ;  y = 1-2, MZ, 7 2  

_ _ _  , clean-gas solution. 
= 5. 
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FIGURE 4. Particle number density at wedge surface for various M , ;  7 = tan-' Z O O ,  y = 1-4, 
k,/m = 1. - present theory; - - -, Peddieson (1975). 
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FIGURE 5. Particle number density at wedge surface for various k, /m;  M ,  = 10, 7 = tan-' 15", 
y = 1.4. ----, present theory; - --, Peddieson (1975). 

6.  Discussion of results 
Some typical calculations based on the preceding theory and solutions (40), (43) 

and (44) are presented graphically in figures 1--6. 
(i) Gas quantities: Figure 1 shows the variation of gas temperature along the wedge 

surface for various values of the interphase heat-transfer coefficient Dl. No comparative 
data seems to be available since earlier researchers have neglected the influence of the 
dust particles on the gas flow. The clean-gas solution (in the second-order Newtonian 
theory) is indicated for comparison. It is seen that the gas temperature decreases along 
the wedge surface and at a greater rate as D, increases. 

Figure 2 plots the surface pressure coefficient, given by 

c,, = 2 ~ ~ p , + . . .  = 2 ~ 2 { 1 + ~ ( ~ + 1 ) ( 1 + k O ~ O ~ ) } + . . .  

for various y .  Again, corresponding clean gas solutions are given for comparison. It is 
observed that CPs increases as y increases. The results are for the case koNo = 1 
(momentum transfer coefficient from dust to gas phase) and the most reliable data is 
for y = 1-2 (since the present theory assumes y-+ 1) .  For this case it is seen that the 
effect of the presence of the dust is to increase the pressure on the wedge by up to 
22.5 yo (at x = 1) .  Figure 3 shows that C,, increases rapidly with increasing effectiveness 
of the interphase momentum transfer coefficient ICONo. 

(ii) Dust quantities: A comparison between the present theory and the results of 
Peddieson (1975), where the dust effect on the gas flow is neglected, is shown in figure 4. 
The particle number density a t  the wedge surface is plotted for various M, and for a 

6 F L M  108 
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x 

FIGURE 6. Typical shock wave location; y = 1.2, M2, T~ = 5,  D,  = 1, k,N,  = 1. - x -, Newtonian 
first-order clean and dusty gas; - - - , Newtonian second-order clean gas; - , Newtonian 
second-order dusty gas. 

wedge half-angle of 20 degrees. Agreement with previous results is good for large M, 
(for which the present theory applies). 

The variation of N along the surface for various k,/m is illustrated in figure 5 for 
M, = 10 and T = tan 15". Comparison with earlier results is good for small values of 
k,/m. For larger k,/m, Peddieson's results may not be valid since, as k,/m increases, 
the particle phase becomes more compressed and hence the particle-phase mass 
fraction may not be negligible near the surface of the body. 

(iii) Shock location: Lastly, figure 6 shows the predicted shock wave location in 
comparison to the clean gas location. The effect of the dust is to bend the shock wave 
and push it towards the wedge surface. It is seen from (43) that  increasing the influence 
of the dust on the gas (through D, and ICONo) has the effect of forcing the shock closer 
to the surface of the wedge. 

7. Conclusions 
The Newtonian theory for hypersonic flow of a dusty gas past a slender body is 

developed up to  second order in 6 = (y  - l)/(y + 1). First- and second-order equations 
are solved for the wedge, analytical expressions are obtained for all flow variables and 
the shock wave location. Streamlines and dust-particle paths are also obtained. The 
variation of important aerodynamical quantities along the wedge surface for various 
combinations of the physical and thermodynamical parameters, such as the adiabatic 
exponent and interphase momentum and heat transfer coefficients, are depicted in 
graphical form. The presence of the dust increases the pressure and decreases the gas 
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temperature along the wedge surface and forces the shock wave to bend towards the 
body. It is also seen that the particle number density decreases for increasing M, and 
increases for increasing interphase momentum transfer coefficient. 

As a final note, it must be pointed out that from the inviscid viewpoint presented 
here the flow is correctly predicted a t  the nose of the wedge. However, from a more 
realistic viewpoint one expects a stagnation point a t  the nose. This might be handled 
by the addition of a viscous boundary layer on the wedge. 
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